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Fluidic trapping of deformable polymers in microflows
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We report that a polymer molecule can be trapped spatially and conformationally using a microflow that has
at least two stagnation points (or two points with equal velocity) and a net flow orthogonal to the line
connecting them. Examples include a Taylor vortex flow and an electro-osmotic flow in a channel with surfaces
that have a sinusoidal charge. Simulating the motion of a polymer molecule in these flows using Brownian
dynamics, we find that such flows produce a curved polymer conformation, leading to an elastic force that

drives migration against the flow, thus stabilizing this conformation. Simulations with hydrodynamic interac-
tions confirm these predictions and show that there exists a repulsive interaction between two trapped

polymers.
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I. INTRODUCTION

The dynamics of a polymer molecule in a microflow can
be drastically different from that in a uniform flow field.
Here, we refer to a microflow as a flow field with a signifi-
cant variation of velocity gradient over length scales of mi-
crons, which are typical dimensions of long bio-polymers
such as DNA. In such a flow, the conformation of a polymer
molecule can be strongly affected by the the structure of the
velocity gradient field, which is not uniform over the length
scale of the molecule as is the case of macroscopic flows.
This is because each segment of the molecule can be sub-
jected to a different velocity gradient due to the rapid varia-
tion in velocity.

When a long polymer molecule is placed in an exten-
sional flow, a hysteretic conformational transition (the “coil-
stretch transition”) can occur as a function of flow strength
[1]. This transition can also occur in a microflow, as was
demonstrated by simulations of a polymer tethered to a wall
at the stagnation point of an extensional flow field above the
wall [2]. As another example, it was predicted by simulations
that a coil-stretch transition can be controlled by a combina-
tion of counter rotating vortexes and an attractive potential
from a plane wall [3].

We report here that a polymer molecule can be trapped
both spatially and conformationally using only a microflow
which has at least two stagnation points (or two points with
equal velocity) and a net flow orthogonal to the line connect-
ing them. Such microflows are likely to be common in mi-
crofluidic devices in which the velocity gradient can vary
significantly over the length scale of the polymer. One ex-
ample considered in this paper is a Taylor vortex velocity
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field (Fig. 1) [4]. The spatial and conformational trapping in
a microflow indicates that a microflow can generate a non-
uniform probability distribution of polymer in the position-
conformation phase space. When this nonuniformity varies
with the size of molecule, this can be used for molecule
separations.

Below, the simulation methods and the model for a poly-
mer molecule are presented (Sec. II B), followed by the re-
sults in Taylor vortex flow (Sec. IIT A) and an electro-
osmotic flow in a microchannel (Sec. III C). Also, the effect
of hydrodynamic interaction (HI) is discussed for trapping of
a single molecule and for simultaneous trapping of two mol-
ecules in Sec. III B.

II. METHOD

A. Taylor vortex flow

Taylor vortex flow (Fig. 1) is an incompressible flow field
and can be expressed in terms of a scalar stream function
W(x,y) as [4]:

FIG. 1. Taylor vortex flow field. Drawn for the region (x,y)
=([0,a],[0,a]). The velocity component of the z direction is al-
ways Zzero.
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V(x,y)= Azif cos(2mx/ a)cos(2y/ B), (1)

v (x,y) = % =—Aa cos(2mx/a)sin(2my/ B), (2)

vy(x,y) =~ % = A sin(2mx/a)cos(2y/ B), (3)

v.(x,y) =0. (4)

Although without a driving force the Taylor vortex decays
with time due to viscosity, this decay is ignored here and 3 is
assumed to be equal to «, for simplicity. Therefore, the only
parameters required to specify the flow field are the magni-
tude of the flow velocity A and the wavelength a.

B. Brownian dynamics

Using Taylor vortex velocity field, we compute the three-
dimensional motion and deformation of a polymer molecule
with the Brownian dynamics (BD) simulation. A bead-spring
model is employed to represent the polymer molecule and
the following equation of motion is computed for each bead

[5]:
rit+ &) —rit) =v,(r)ét +%5I + 1/ 6%;%. (5)

Here, r;, v;, and f; are the position, velocity, and conservative
force vectors of bead i(=0— N), respectively, where v,(r;) is
given by Egs. (2)—(4). &t is the time increment of the simu-
lation, € is the drag coefficient of each bead, kp is the Bolt-
zmann constant, 7 is the absolute temperature, and n is a
random vector whose components are chosen from the range
[-1,1] in each time step. This is a free-draining BD simula-
tion with hydrodynamic interactions (HIs) between beads ig-
nored. The effect of HI is discussed in Sec. III B.

We take the force of the spring, which connects the adja-
cent beads i and j, to be that of a WLC (worm-like-chain)
[6-8] used to model semiflexible polymers such as a DNA:

i}’=kLT{<1—ﬁ‘>2—l+ﬂ}ﬁi, (6)
2bg Ry Ry |1y

where r;;=r;—r;, by is the Kuhn length of the polymer, and
Ro=L/(N-1) is the maximum spring length where L is the
contour length of the molecule. The force due to the ex-
cluded volume of beads is modeled as [8]:

IUST
X _ U 7
=3 )
with
] > 3\ 3r;
U= EkaTNK’S<_47TS§) exp| — Eé , (8)

where v is the excluded volume parameter, and Sf
=N, K,_Ybi/é is the radius of gyration of an ideal chain consist-
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FIG. 2. A stretch history of a polymer molecule in a Taylor
vortex flow with Aa=2.0[1/7], a=12[[] (top). The polymer takes
two states: the trapped state (left bottom) and the tumbling state
(right bottom). The polymer molecule has contour length L=21[/]
(10 beads) and the stretch is defined as the largest distance between
any two beads in a molecule.

ing of Nk, Kuhn segments, with Ny related to the spring
length Ry by Ry=Ng ;bg. The total conservative force acting
on bead i is fi=2 (T +f}}).

In what follows, we take [, kgT, and 7 as the units of
length, energy, and time, respectively, and here we set
[=1(um), and 7=1(s). In our simulations, the time increment
of the polymer motion is 8=0.01[ 7]. The drag coefficient of
a bead is é=11.9[kgT7/I*]. The contour length of the poly-
mer molecule is L=21.0[/] and the polymer contains 10
beads. The Kuhn length is bx=0.106[] and excluded volume
parameter v=0.0012[/*]. These parameters for the WLC
spring model and the excluded volume potential were taken
from Ref. [8] to model a A-DNA molecule.

III. RESULTS
A. Trapping in a Taylor vortex flow

The BD simulations for a polymer in a Taylor vortex flow
show that the molecule can exist in two types of state, the
conformationally trapped and the tumbling state (see Fig. 2).
In the tumbling state, the polymer molecule rotates in a vor-
tical region of the flow. In the trapped state, the polymer
molecule is held roughly stationary both spatially and con-
formationally long enough to be tracked for many polymer
relaxation times even in the presence of Brownian motions.

This phenomenon is analogous to the coexistence of both
coiled and stretched states of a polymer tethered to a plane
wall and subjected to a stagnation point flow [2]. In this
microflow, the tethered polymer can exist in either a coiled
or stretched state, since in the stretched state, the free end of
the polymer resides in a fast flow that keeps the chain
stretched, while in the coiled state, the whole molecule re-
sides near the stagnation point.
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FIG. 3. Relationship between mean trap time of a polymer mol-
ecule and the normalized magnitude of flow field A. Here, T
=4.1[7] is the relaxation time of the polymer [8], and a/L repre-
sents the ratio of the wavelength of the Taylor vortex flow (i.e., 2
Xvortex size) to the contour length of the polymer molecule. Data
denoted by (+) symbols were obtained by BD simulations with
hydrodynamic interactions, and others by free-draining BD simula-
tions. Error bars indicate the standard errors. In the inserted figure,
the trap ratio, which is the fraction of time a molecule is trapped, is
shown for A7,=0.7.

The stability of the trapped state is dependent on the pa-
rameters of flow field, A and « (see Fig. 3). We find that the
trapped state is more stable for larger A and that there is an
optimal « that maximizes stability, which is around «
=12.0[7] for a molecule of contour length 21.0[/] with 10
beads. If A is large and « is tuned for trapping, this can lead
to “ergodicity breaking” where the trapped state and the tum-
bling state become separated from one another for very long
times in the conformational phase space of the system [2].
The simplest example of ergodicity breaking was demon-
strated by Schroeder et al. for a very long DNA molecule in
extensional flow [1].

The stability of the trapped state can be explained by a
simple local force balance along the molecule between the
drag forces from the flow on the beads and the spring forces.
As shown in Fig. 4, although the drag forces stretch the
molecule and tend to pull it upwards, the spring forces acting
along the curved contour of the molecule tend to pull the
molecule back downwards and limit its stretch. The total
spring force pulling the molecule toward the center of the
curvature is the same force that induces radial migration of a
polymer molecule in a curvilinear shearing flow such as a
concentric cylinder or a cone-and-plate flow [9,10]. Here,
however, this force is exactly balanced by the total drag force
by the flow field, leading to both conformational and posi-
tional trapping.

Neglecting Brownian motion, the force balance along a
polymer molecule in the trapped state can be expressed by
the following equation:

FIG. 4. Local force balance along a curved polymer molecule
under fluidic stretching: the spring forces (black arrows) balance the
drag forces exerted on beads by a solvent flow (gray arrows).
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FIG. 5. Examples of stable conformations of polymer molecules
in Taylor vortex flow for Aa=8.0[1/ 7] and a=12[[]. The number of
beads is 10 in the top figure, 13 in the middle, and 19 in the bottom.

d ] fPINGs) dr |
v[r(s)]&(s) + ds{ AG) ds} =0, )
with boundary conditions
dr _ =0. (10)
ds 5=0 ds Ssz

Here, r(s) is the position vector at s, which is a position
coordinate along the polymer contour, v[r(s)] is the velocity
of solvent at position r(s), &(s) is the drag coefficient per unit
length of the polymer at s, N(s) is the local stretch of the
polymer at s and L, is the length of the polymer. The first
term of the left side in Eq. (9) represents the drag force per
unit length at position r(s) and the second term represents the
derivative of the tension vector at the position, which pro-
duces a net migration force normal to the polymer contour.
Solving Eq. (9) for a molecule modeled by our bead-spring
model, we obtain the stable conformations in a Taylor vortex
flow shown in Fig. 5. All of these conformations were con-
firmed to be stable enough to hold the molecule in fixed
conformation and position even when Brownian motion is
added. Note, however, that not all of these conformations
were observed in the BD simulations because some of them
have only a small chance of being accessed from an arbitrary
starting state. When the size of the vortexes is much smaller
than that of molecule (i.e. @<<L), the molecule can be
trapped over multiple vortexes via stagnation points at the
centers of the vortexes.

B. Effect of hydrodynamic interactions

BD simulations with hydrodynamics interactions were
also carried out to examine the effect on the trapping behav-
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FIG. 6. The magnitude of flow perturbation velocity field
[Vii(x,y)] induced by hydrodynamic interactions in the x-y plane at
z=0, where a polymer molecule is trapped. The directions of the x
and y axes are the same as in Fig. 4 with respect to the conforma-
tion of the trapped polymer, and the origin (x,y)=(0,0) is set to be
the center of mass of the trapped polymer. Note that, in this plane,
the flow perturbation velocity does not have a z component and has
only in-plane components.

ior in a Taylor vortex flow. The HIs between beads of a
polymer molecule were computed using the Rotne-Prager-
Yamakawa (RPY) tensor [11,12], and the details of this
simulation are described in the Appendix. The simulation
results show that HI does not significantly affect the trapping
behavior but only produces a small variation from free-
draining simulations in the mean trap times (Fig. 3). This is
because the flow perturbation induced by HIs are not large
enough, even in the trapped state, to significantly change the
conformation of a polymer in the Taylor vortex flow. Figure
6 shows the flow perturbation by HIs in the z=0 plane,
where a polymer is trapped, and the velocity induced by HIs
is only 15% of the magnitude of the Taylor vortex flow (Aa)
at most, even very close to the polymer.

An interesting point to note here is that, when a polymer
is trapped in the x-y plane at z=0, the flow perturbation
velocity field in an x-y plane for z# 0 has a nonzero z com-
ponent of velocity. In other words, a two-dimensionally
trapped polymer pushes solvent hydrodynamically along the
z axis. As shown in Fig. 7, the z component of the flow
perturbation is directed away from the trapping plane (z
=0) over most of the area, and decays with distance from the
trapped polymer. Note that the flow perturbations were com-
puted for a trapped polymer at the steady state without
Brownian motion using the parameters Aa=10.0[//7], «
=2.0[1], and L=21.0[/] (10 beads).

These results imply that two trapped polymers close to-
gether in a Taylor vortex flow interact repulsively due to the
induced HIs. We computed the velocity of center-of-mass
migration by HIs in the z direction for four different configu-
rations of two simultaneously trapped polymers (Fig. 8). For
all four configurations, two trapped polymers repel each
other, and the repulsive velocity decays ~rf21‘8 asymptoti-
cally, where r;, is the distance between centers of mass of
two trapped polymers. Therefore, if multiple polymers were
simultaneously trapped in a microflow, they would tend to
disperse in space and not concentrate.
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FIG. 7. The z component of the flow perturbation velocity field
[Vir.(x,y)] in the z=1 plane (top) and z=3 (bottom) induced by
hydrodynamic interactions from a polymer trapped in the z=0
plane. The directions of the x, y axes and the origin are chosen as in
Fig. 6. A positive Vy; . indicates a velocity away from the z=0
plane, where the trapped polymer resides.

C. Trapping in an electro-osmotic flow

Conformational trapping of a polymer molecule is a gen-
eral phenomenon that might occur for a deformable polymer
molecule in a flow field that satisfies the conditions that there
are at least two stagnation points and a net flow orthogonal to
the line connecting them.

One well-defined geometry that creates such a flow is a
electro-osmotic flow generated by an electric field E in a
fluid bounded by surfaces bearing a charge varying sinusoi-
dally in space, which was proposed by Ajdari [13]. Consider
two flat insulating surfaces, defined as the x= * A planes in a
(x,y,z) system of Cartesian coordinates, confining an elec-
trolyte solution of Debye length «~!, dielectric constant e,
and viscosity 7. If the surfaces have a symmetric charge
distribution: o*(y)=0"(y)=0y cos(gy), the stream function
of the flow field ¢(x,y), such that d.¢=v, and d,p=-v,, is
expressed as

#(x,y) = woE, cos(qy)
« h cosh(gh)sinh(gx) — x sinh(gh)cosh(gx)
hq — sinh(gh)cosh(gh)

(11)

in the limit of a thin Debye layer x>gq,h”', where u,
=—0y/ 7k and E, is the y component of the electric field.
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FIG. 8. Four configurations of two closely trapped polymers
(bottom), and the z component of the relative velocities of the two
centers-of-mass V), induced by hydrodynamic interactions for
each configurations (top). |, is the distance between the centers of
mass. Note that a positive V, , corresponds to chains moving away
from each other.

From simulations using this geometry, we find that a neu-
tral polymer molecule can be trapped in a similar way as in a
Taylor vortex flow (see Fig. 9). Although Panwar et al. pre-
viously studied the polymer stretching behavior in the same
geometry, their ratio of the size of the polymer molecule to
channel width 2/ was too small (R,/2h = 1073) for the flow
to trap a polymer conformationally [14]. In our simulation,
R,/2h=0.03 was used.

AR
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Lox
FIG. 9. Steady-state conformation of a trapped polymer in an
electro-osmotic flow in a channel whose surfaces bear a sinusoi-
dally varying charge: o~ (y) =0y cos(qy+m/4), where o[, was cho-
sen to satisfy uoE,=7.0[1/7], and q=2m/(2h)[I"'], h=6.0[1]. The
contour length of the polymer is L=21[/] (10 beads). Despite the
presence of arrows going into the wall, a thin boundary layer at the
wall preserves the no-penetration boundary condition.
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FIG. 10. The center-of-mass distribution marked as dark shad-
ing (top) and history of the center-of-mass position in x direction
(bottom) of a polymer molecule in an electro-osmotic flow in a
channel whose surfaces bear a charge varying sinusoidally plus a
net charge: o (y) =0y cos(qy+1/4)+ 0, Where o and o, were
chosen to satisfy uoE,=4.0[l/7] and u,oE,=2.0[l/7], and ¢
=27/ (2h)[I""], h=10[{]. The contour length of the polymer is L
=63[1] (30 beads).

Moreover, when the surfaces of this channel have a net
charge: o*(y)=0 (y)=0ycos(qy)+0, the simulations
show an inhomogeneous distribution of a neutral polymer
molecule in the resulting electro-osmotic flow as shown in
Fig. 10. The polymer molecule is trapped near either of the
two streamlines that have a relatively large flow velocity and
rarely seeps into the region between them. When trapped
along a streamline, the molecule is stretched along the
streamline most of the time and we observed a conformation
similar to the trapped state shown previously in the Taylor
vortex flow, but here, because of a net flow, the conformation
changes periodically and the motion resembles that of a
swimming sea snake.

Note that the surfaces have a sinusoidal charge plus a net
charge, which is equivalent to surfaces having only a sinu-
soidal charge but a polymer molecule having a charge,
whose electrophoretic mobility is w,= 0/ k.

IV. SUMMARY AND DISCUSSION

Our simulations suggest the possibility of single-molecule
trapping and stretching using only a fluid flow such as a
microflow with multiple vortexes. Using such a flow, a poly-
mer molecule can be trapped spatially and conformationally
without external force or physical constraint. The stability of
the trapped state of a molecule can be optimized by tuning

011801-5



WATARI, DOIL, AND LARSON

the parameters of the flow field, namely the magnitude and
the size of the vortexes.

The trapped state is stabilized by two key dynamics of the
polymer: the coil-stretch transition and the center-of-mass
migration in a curved streamline. The conformational trap is
triggered by the coil-stretch transition that separates two con-
formational states of a polymer molecule in the conformation
phase space. The positional trap is realized by a balance
between the migration induced by the drag force on the mol-
ecule and the center-of-mass migration in a curved stream-
line, which is also observed in a curvilinear shear flow such
as a cone-and-plane flow.

Note that microflows with multiple vortexes have been
used to mix solutions in a microchannel [15]. Our study sug-
gests that this flow could also demix or concentrate polymer
molecules when the length scale of the molecule size is com-
parable to, or larger than the vortex size. This effect could be
utilized for separation of polymer molecules from small mol-
ecules, such as separation of DNA from proteins.
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APPENDIX: BROWNIAN DYNAMICS WITH
HYDRODYNAMIC INTERACTIONS

To describe Brownian dynamics simulations with hydro-
dynamics interactions between the beads of the polymer, we
replace Eq. (5) by [16]:
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N N
dD;; D f:
ri(t + (Sl) _ri(l) = vi(ri) + 2 Y + 2 ] f/ St
=1 drj o kgT
+\65% By ;. (12)
j=1

where D(=B-8B") is the RPY tensor described as follows
[8,11,12]:

kT
D=1, (13)
&
kgT 3a rr:
D= L—{clﬂ cz—’%i] if i # j and r;; = 2a,
' & 4ry; 2
ij ij

(14)

kgT 9rij 3ryri| .
D.:L[(l —rl>z+—r—&} if i # j and r; < 2a,

it 32a)7 7 32.ar,

(15)

2 2
Cr=1+-%, (16)

ri;

2 2
Cr=1-"%. (17)

rij

Here, r;j=r;-r,, 7 is the 3 X 3 identity matrix, a is the radius
of a bead and ¢ is the drag coefficient of a bead. The param-
eters a=0.077[1] and £=15.4[kzT7/1*] were used to make the
relaxation time and the diffusivity of the polymer equivalent
to those of the free-draining BD simulation [8]. Note that the
gradient of D;; [the second term in the right-hand side of Eq.
(12)] vanishes for the RPY tensor.
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